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How can we  control quantum systems 
without disturbing them? 

Quantum Feedback Control 

The nanomechanical electrometer shown here was built in Michael Roukes’ group at Caltech.

It has a demonstrated sensitivity below a single electron charge per unit bandwidth and should

ultimately reach sensitivities of the order of parts per million. Its operation is based on the 

movement of a torsional resonator that carries a detection electrode placed in an external 

magnetic field. The gate electrode is seen on one side of the resonator.
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Ever since Niels Bohr’s first
attempt at understanding the
hydrogen atom, the fundamen-

tal cautionary lesson of quantum
mechanics has been driven home
time after time: Processes in the
microworld transpire according to
laws and principles that directly con-
tradict those governing the
macroworld of human experience.
This radical shift in understanding is
now almost a century old and has
been definitively confirmed by
numerous experiments. It might seem
likely that the strange behaviors of
quantum systems would be familiar
by now and practical devices har-
nessing those behaviors would be
commonplace. For the most part,
however, we have remained mere
spectators of the microphysical
realm, where quantum mechanics
holds sway, being forced to observe
naturally occurring phenomena rather
than being able to control and manip-
ulate them. In the coming decade,
however, this situation may be
reversed. 

Recent advances in quantum and
atomic optics and condensed matter
physics are providing tools to engi-
neer practical quantum devices and
perhaps even modestly complex 
networks of these devices. Quantum
information processing, precision
measurement, and development of
ultrasensitive sensors are driving 
the present development of quantum
technologies. If quantum technologies
are ever to achieve the complexity of
classically engineered systems such
as jet aircraft and the Internet,
a quantum analog of classical feed-
back control must be developed, since
feedback control is at the heart of the
stability and predictability underlying
complex engineered systems. 

Along these lines, recent theoreti-
cal results on error correction in 
quantum computation and on the
dynamics of open quantum systems
may be viewed as first steps in devel-
oping a theoretical formalism for
practical quantum feedback control
(see the articles “Introduction to
Quantum Error Correction” on 
page 188 and “Realizing a Noiseless
Subsystem” on page 260). Indeed,
feedback control represents a promis-
ing new approach to mitigating quan-
tum noise and decoherence in both
quantum computation and precision
measurement. If we are to apply the
concepts and methods of feedback
control theory to quantum dynamical
systems, we must not only extend
classical control concepts to new
regimes but also analyze quantum
measurement in a way that is useful
for control systems.

The Evolution of Control
Theory

Controlling natural phenomena
through macroscopic engineering goes
back thousands of years. Consider for
a moment the ingenious ways in
which early human civilizations con-
trolled irrigation. In Mesopotamia
(2000 BC), where rainfall was poor
and the Tigris and Euphrates Rivers
were the main sources of water, engi-
neers constructed an elaborate canal
system with many diversion dams (see
the drawing to the left). In that sys-
tem, the Euphrates served as a source
and the Tigris as a drain. In a similar
vein, the ancient Egyptians used water
from the Nile and thereby allowed
their civilization to flourish. On a
smaller scale, machines using feed-
back control were developed in the

Greco-Roman period, and methods for
the automatic operation of windmills
date back to the Middle Ages. 

Perhaps the best-known example
of feedback control in the industrial
era is the Watt governor, which stabi-
lizes steam engine speeds under fluc-
tuating loads. James Clerk Maxwell
provided the first dynamical analysis
of this system based on differential
equations. His work, which was 
published in 1868, founded the field
of mathematics now known as 
control theory. In the early part 
of the 20th century, the idea of self-
regulating machinery continued to be
pushed in various directions, notably
in electronic amplification. Control
concepts were further developed for
industrial, navigational, and military
applications. 

After World War II, control sys-
tems progressed to a new level of
complexity. Up until that time, feed-
back control systems had been largely
single loop, taking the feedback sig-
nal from one point and connecting the
correction signal to a different point.
Multiloop control systems and more-
sophisticated feedback techniques
emerged from progress in optimiza-
tion theory and dynamical systems
theory, as well as from the advent of
digital computers. 

After 1960, there emerged what is
often referred to as “modern” (as
opposed to “classical”) control theory
(Brogan 1990, Zhou et al. 1996),
which emphasizes optimization of
cost and performance. For the same
control goals, it is clear that not all
control strategies will be equally
effective in terms of cost and perform-
ance. Determining the best strategy
defines the problem of optimal con-
trol; however, optimal algorithms are
often unstable to variations in system 



parameters and the external environ-
ment. Theorists then turned to ensuring
performance bounds in the presence of
uncertainty. This work resulted in the
theory of “robust” control (Zhou et al.
1996). Noise in the inputs, extrinsic
disturbances in the system under con-
trol, measurement errors, and modeling
inadequacies—all can render control
systems less effective or, in some
cases, even lead to catastrophic fail-
ures. The role of robust control is to
maintain adequate stability and other
performance margins given the uncer-
tainties mentioned earlier. 

Classical Control Systems

Formally speaking, a control sys-
tem consists of a dynamical system
interacting with a controller, a device
that influences the state of the dynam-
ical system toward some desired end.
The objective may be to regulate the
flow of an industrial process, money,
energy, information, and so on. In a
“closed-loop,” or feedback, control
system, the controller uses outputs
from the dynamical system to monitor
and influence its interaction with that
dynamical system. For a linear
dynamical system, for example, such
a situation could be described by the
following equation:

(1)

where x is a vector describing the
state of the system, dW is a vector 
of Gaussian noise sources, and u is
the vector of inputs determined by 
the controller. The matrix A gives the
system’s deterministic motion, and B
and C describe, respectively, how the
noise and input vectors are coupled
into the system. A separate equation,
namely,

(2)

describes the continuous measurement

of system outputs by the controller. 
In each small time interval dt, the con-
troller obtains the measurement result
dy. That result is directly related to the
true state of the system by some linear
transformation H, but it also includes 
a Gaussian noise process V, which
serves to represent imperfections 
in the measurement. 

Examples of control systems can
be found in many applications. For
instance, servomechanisms are control
systems that use small control inputs
to produce changes in large mechani-
cal systems. In effect, the larger sys-
tems are “slaved” to the output of the
servomechanisms (for example, liquid
levels in reservoirs are controlled by
float valves). Feedback circuits are
used in ingenious ways in electronic
amplification to manipulate input and
output impedances and to improve the
linearity, distortion, and frequency
bandwidth of the output signal relative
to the input signal. 

In an “open-loop” control system,
the controller does not monitor 
the output of the dynamical system. 
A dynamical model for the system is
assumed, and control is applied with
the idea that the desired outcome will
actually be achieved. Open-loop

strategies are useful in situations in
which the system dynamics are known
precisely and vary only slowly.
Processes with long measurement
dead times are sometimes better suit-
ed to open-loop control methods than
to feedback methods. Open-loop con-
trol strategies are applied in situations
as diverse as the maximization of
returns from financial investments,
optimal determination of aircraft
flight paths, and controlled dissocia-
tion of molecules. 

Figure 1 shows how to implement
closed-loop control for a dynamical
system. One must be able to measure
some of the dynamical variables of
the system under control (the outputs)
and use them to influence some other
variables (the inputs). In other words,
given the output variables, the con-
troller implements a particular control
strategy to influence the state of the
dynamical system by appropriately
varying the inputs. Robust controllers
take into account variations in system
parameters and fluctuations from 
the external environment to produce
control strategies with guaranteed 
stability bounds. 

Control systems can involve many
different interacting physical systems

dy = Hxdt + RdV ,  

dx = Axdt + BdW + Cu  ,  
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Figure 1. Classical Feedback Control
The classical dynamical system to be controlled has a set of input variables, which
are processed by the system dynamics into a set of output variables. Some fraction
of the set of input and output variables (possibly different for each case) is available
for hookup to the controller. The controller has to perform in the presence of exter-
nal fluctuationsthat is, uncertainties and drifts in the parameters describing the
dynamical systemand measurement errors.



with a large number of sequential,
parallel, and nested control loops that
are both open and closed. For exam-
ple, closed- and open-loop strategies
can be combined as in the fast closed-
loop systems used to stabilize the
slower, inherently unstable open-loop
dynamics of modern fighter aircraft. 

Developing Control in
Quantum Systems

The general picture of control sys-
tems outlined in the previous section
appears to be extendable to quantum
systems. Certainly, open-loop control
problems are conceptually straightfor-
ward in the quantum context. One
begins with the time evolution opera-
tor of the quantum system—the
Schrödinger equation for the wave
function, the Liouville equation for the
density matrix, or more complicated
dynamical evolution equations for 
the density matrix characterizing a
system coupled to an environment. 
A theory for time-dependent variations
in the evolution operator is then devel-
oped in such a way that the wave 
function or the density operator at
some time is close to some target

value. This target value does not have
to be unique, nor in fact is the time
evolution to that value unique. The
approach just outlined applies equally
well to classical probabilistic evolu-
tions: Although quantum and classical
systems are dynamically distinct, the
principles for open-loop control are in
fact very similar. 

Controlling chemical reactions by
laser-produced electromagnetic fields
that are time dependent is a well-
known open-loop quantum control
problem. In the frequency-resolved
approach to control, the quantum
interference between different evolu-
tionary paths is being manipulated; in
the time-resolved approach, the
dynamics of wave packets produced
by ultrafast laser pulses leads to con-
trol. For some specific control of the
chemical reactions, one can optimize
the temporal and spectral structure of
those laser pulses (Shi et al. 1988). 

The fundamental differences
between classical and quantum systems
become real issues, however, in the
field of closed-loop control. Quantum
systems can have two distinct types 
of feedback control: directly and indi-
rectly coupled quantum feedback (see
Figure 2). As illustrated in Figure 2(a),

in a system with directly coupled quan-
tum feedback, a quantum variable of
the system is coupled to the quantum
controller, and a quantum input path
from the controller goes directly back
to the quantum system. When the
quantum feedback is indirect, as shown
in Figure 2(b), the quantum dynamical
system under control is an observed
system. It therefore generates a classi-
cal output, also known as the measure-
ment record, which the controller may
analyze to provide a best estimate of
the original quantum state of the sys-
tem. The controller then feeds back 
a classical signal to vary parameters 
in the quantum evolution operator 
in accord with the chosen control 
strategy. Hybrid couplings using both
direct and indirect quantum feedback
channels are easy to envisage: The
channel from the system output to 
the controller input may be directly
coupled whereas the channel from the
controller output to the system input
may be coupled indirectly through a
classical path. 

In both classical and quantum 
contexts, the main goal of closed-loop
control is to enhance system perform-
ance in the presence of noise from
both the environment and the 
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Figure 2. Directly and Indirectly Coupled Quantum Feedback
(a) Both the dynamical system and the controller are quantum systems coupled through a unitary interaction. A quantum 
variable is coupled to the quantum controller, and a quantum input path from the controller goes directly back to the quantum
system. (b) A quantum dynamical system can be viewed as having two sets of inputs, one relating to the variation in the classi-
cal parameters describing the Hamiltonian and the other representing fully quantum inputs. Similarly, the output channel can 
be divided into a quantum and a classical channel. The classical channel is, in fact, a piece of the quantum channel that 
has become classical after observation. The controller analyzes the classical record to form an estimate of the dynamical 
system’s state and uses this information to implement the appropriate control.
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uncertainty in the system parameters.
To limit the effects of noise, the 
controller must perform an irre-
versible operation. Noise generates a
large set of undesirable evolutions,
and the controller’s task is to map this
large set to a much smaller one of
more desirable evolutions. Mapping
from the larger to the smaller set is by
definition irreversible. In other words,
noise is a source of entropy for 
the system. To control the system, the
controller must extract the entropy
from the system under control and put
it somewhere else. The controller
must therefore have enough degrees
of freedom to respond conditionally
upon the noise realization. In indirect
quantum feedback control, the meas-
urement process, coupled with the
conditional response of the controller,
is the source of entropy reduction. 
In direct quantum feedback control,
the evolution of the system is fully
unitary, or quantum mechanical. The
quantum controller provides a large
Hilbert space of quantum mechanical
states. That is precisely where the
entropy generated by the noise may
be put (or where the history of the
effect of the noise on the system may
be stored). The quantum controller
then reacts conditionally to this 
quantum record, keeping the entropy
of the quantum dynamical system 
low, while the entropy of the storage
location grows continually. 

Inherent Noise Generation in
Quantum Feedback Control

Unlike classical systems, quantum
systems may be easily disturbed when
information about them is extracted.
Measurement disturbs a quantum 
system through the following intrinsic
property of quantum mechanics:
Obtaining accurate knowledge about
one observable of a quantum system
necessarily limits the information
about an observable conjugate to the

first. For example, particle position
and momentum are conjugate observ-
ables, and the uncertainties inherent 
in the knowledge of both are codified
by the famous Heisenberg uncertainty
relation. If the chosen feedback-
control strategy involves measure-
ment, one must take into account 
the effects of the measurement on 
the evolution of the quantum system.
A generally applicable model for
including those effects is that of a
continuous quantum measurement.
This model was developed for quan-
tum optics (Carmichael 1993), a field
in which such measurements have
been realized experimentally, and it
was also derived in the mathematical
physics literature with the help of
more abstract reasoning (Barchielli
1993). In this volume, the model of a
continuous quantum measurement is
presented in the article “The
Emergence of Classical Dynamics in a
Quantum World” on page 110. 

Quantum measurements may 
introduce unwanted noise in three
more-or-less distinct ways. First, one
may measure an observable conjugate
to the real variable of interest and
thereby introduce more uncertainty in
the latter variable. More generally,
one may attempt to obtain information
inconsistent with the state under con-
trol. For example, to preserve a state
that is the superposition of two posi-
tion states, position measurements
must be avoided because they will
destroy the superposition. Thus, in
quantum mechanics, the type of 
measurement chosen must be consis-
tent with the control objectives. This
condition is unnecessary in classical
feedback control. Second, if trying 
to control the values of observables
(Doherty et al. 2000), one must con-
sider that the time evolutions of differ-
ent observables necessarily affect each
other over time. Observables whose
values are uncertain at one time will
cause other observables (perhaps more
accurately known) to become uncer-

tain at a later time. For example,
a very accurate measurement of the
particle position at one time intro-
duces uncertainty into the value of the
particle momentum. Because the value
of momentum determines the position
of the particle at a later time,
the momentum uncertainty makes the
future position of the particle more
uncertain, hence introducing noise into
the quantity that is being measured.
This mechanism for introducing noise
is usually referred to as the back
action of a quantum measurement.

The third kind of noise involves 
the randomness of the measurement
results. Because the state of the
observed system after a measurement
depends upon the outcome of the
measurement, the more the result fluc-
tuates, the more noise there is in the
evolution of the system. For classical
measurements, fluctuations in meas-
urement results cannot be any more
than the entropy of the system before
measurement; that is, the measurement
does not introduce any additional
noise into the system. In quantum
mechanics, however, even if the sys-
tem state is known precisely, one can
still make measurements that change
the state in a random way, thereby
actually injecting noise into the sys-
tem. This observation is particularly
relevant when the overall state of the
system, rather than a specific observ-
able, is being controlled. The situation
is further complicated by the fact that,
for certain classes of measurements,
there is actually a tradeoff between the
noise injected by the measurement and
the information gained by the observer
(Doherty et al. 2001). As a result,
designing measurement strategies is
far from being a trivial activity.

Strategies for Quantum
Feedback Control

The differences between classical
and quantum measurements profoundly
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affect the design of feedback control
algorithms. A classical controller
extracts as much information from 
the system as possible. In quantum
control, irreducible disturbances are
inherent to any measurement, and
therefore the measurement strategy
becomes a significant part of the feed-
back algorithm. For example, just as
the inputs to the system change with
time, the measurements too may need
to be varied with time so that the best
control should be achieved. 

Adaptive measurement, or altering
the measurement as it proceeds, was
first introduced by Howard Wiseman
(1995), not for control but for 
accuracy. The result was a more 
accurate measurement of some aspect
of the quantum state. Nevertheless,
this approach has a unique bearing on
quantum feedback control algorithms.
Knowing that quantum measurements
can disturb the state being measured,
one may want to start a continuous
measurement process by measuring in
a way that is not necessarily optimal
but is sufficiently weak to cause 
minimal disturbance to the aspect 
of interest. As the measurement pro-
ceeds, one uses the continuously
obtained information about the state
to make the measurement increasingly
close to optimal. 

For example, consider measuring
the oscillation amplitude of a 
harmonic oscillator when the phase 
of the oscillation is unknown but 
the oscillator is known to be in an
amplitude-squeezed state; that is, the
uncertainty in amplitude or energy is
much smaller than the uncertainty in
phase, the conjugate variable (see
Figure 3). In this case, an accurate
measurement of amplitude is given
by a measurement of position at the
moment when the particle is at its
maximum spatial extent, or maxi-
mum distance from x = 0. On the
other hand, at the moment when the
particle has the most momentum (at
position x = 0), the ideal quantity to

measure is momentum. Thus, for a
continuous measurement of the oscil-
lation amplitude, a linear combina-
tion of position and momentum
should be measured and the relative
weighting of those two variables
should be allowed to oscillate in
time. However, without knowing 
the mean phase of oscillation, one
cannot know which variable should
have the most weighting in the meas-
urement at what time. Using an 
adaptive measurement procedure,
one can start by assuming the oscilla-
tor to have a particular phase and
then adjust the relative weights of
position and momentum to more
desirable values as information about
the phase is obtained. 

Applications of Quantum
Control

Atomic optics is one field in which
it should be possible to test quantum

feedback control in the near future. 
It has already been demonstrated that
a single atom can be trapped inside 
an ultralow-loss optical cavity (mirror
reflectivity is R = 0.9999984 in 
experiments at Caltech) in the strong-
coupling quantum regime (Mabuchi et
al. 1999). Figure 4 illustrates the
experimental setup used at Caltech.
The strong coupling occurs between
the atom and the radiation field in 
the cavity and is proportional to the
induced atomic dipole moment and
the single-photon cavity field.
Continuous measurements and real-
time feedback could be used to cool
such an atom to the “ground” state of
the quantized mechanical potential
produced by several photons in the
cavity. The average number of pho-
tons circulating inside such a cavity
can be kept very low (from 1 to
10 photons) if one uses a weak driv-
ing laser that barely balances the slow
rate at which individual photons leak
out. If the cavity mode volume is 
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Figure 3. “Squeezed” States for a Harmonic Oscillator
Squeezing may be illustrated by considering phase-space plots of a Gaussian wave
function. For a standard Gaussian state, the uncertainties in the x- and p-direction
are equal, and the uncertainty ellipse takes the shape of a circle, provided appropri-
ate position and momentum scalings are made. When states are “squeezed,” the area
of the uncertainty ellipse remains constant, but the ellipse is rotated and squeezed
as shown. Squeezing momentum, for example, means reducing the uncertainty in
momentum. The constant energy surface is the dashed circle, and the position on 
the circle can be specified by the angle. Squeezing phase and energy again refers 
to changes in shape of the uncertainty ellipse for the wave function.
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sufficiently small, just a few photons
can give rise to dipole (alternating-
current Stark shift) forces that are
strong enough to bind an atom near a
local maximum of the optical field
distribution. At the same time, the
atomic motion can be monitored in
real time by phase-sensitive measure-
ments of the light leaking out of the
cavity. To a degree determined by the
fidelity of these phase measurements,
the information gained can be used
continually to adjust the strength of
the driving laser (and hence the depth
of the optical potential) in a manner
that tends to remove kinetic energy
from the motion of the atomic center
of mass. 

In order to perform such a task in
real time, however, it is essential to
develop approximate techniques for
continuously estimating the state of
the atomic motion. Approximations
are needed because integrating a sto-
chastic conditioned-evolution equation
to obtain a continuous estimate of the
density matrix is far too complex a
task to be performed in real time.
While this experiment remains to be
carried out, we have developed an
approximate estimation algorithm1

and used it in combination with an
experimentally realizable feedback
algorithm (see Figure 5). 

Feedback cooling ideas can also be
applied to condensed-matter systems.
Some of our recent calculations pre-
dict that feedback control can be used
to cool a nanoresonator below the lim-
its set by refrigeration. This method
would reduce thermal fluctuations to
approximately the quantum energy
level spacing of the resonator. These
findings are important because
nanoscale devices are interesting from
a more fundamental perspective than
merely sensing and actuation applica-
tions. Provided they can be cooled to
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Figure 5. Simulating a Feedback Algorithm to Cool Atomic Motion in
an Optical Cavity
In this simulated experiment, the light forms an effective sinusoidal potential for the
atom, and the controller switches this potential between a high and a low value
(separated by some ∆V) to cool the atomic motion. In this simulation, the feedback
is turned on at t = 2, and the expected value of the atomic motion energy is plotted
here as a function of time for four different values of ∆V. Although these results are
still preliminary, they indicate that the effectiveness of the feedback algorithm is
highly dependent on ∆V.

Figure 4. Quantum Feedback in a Cavity Quantum Electrodynamics
Application
The dynamics between the atom and the photon field in the cavity can be modified
by continuous measurement of the light transmitted through the cavity (which bears
information about the evolving system state) and by continuous adjustment of the
amplitude/phase of the driving laser in a manner that depends on the measurement
results. Control objectives of fundamental interest include active cooling of the
motion of an individual atom, feedback-stabilized quantum state synthesis, and
active focusing of atomic beams for applications such as direct-write lithography.
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1 This algorithm is described in a yet unpub-
lished paper by Salman Habib, Kurt Jacobs,
Hideo Mabuchi, and Daniel Steck.



sufficiently low temperatures, low-
loss nanomechanical resonators would
be excellent candidates for the first
observation of quantum dynamics in
mechanical mesoscopic systems. Yet,
as mentioned above, in order achieve
this goal, we must reduce thermal
fluctuations to approximately the
quantum energy level spacing of the
resonator, a task which requires tem-
peratures in the range of millikelvins. 

To cool the position coordinate of
the nanoresonator, one needs a suit-
able scheme for continuous position
measurement. One practical method
of performing a continuous measure-
ment of a nanoresonator’s position is
to use a single-electron transistor
(SET)—see Figure 6. To make the
measurement, one locates the res-
onator next to the central island of 
the SET. When the resonator is
charged and the SET is biased so that
current flows through it, changes in
the resonator’s position modify the
energy of the central island, which
produces changes in the SET current.
The current therefore provides a con-
tinuous measurement of the position
of the resonator, a requirement for
implementing a linear feedback cool-
ing algorithm. A feedback force can
be applied to the resonator by varying
the voltage on a “feedback electrode,”
which is capacitively coupled to the
resonator (see Figure 6). The applied
voltage is adjusted so as to damp the
amplitude of oscillation. 

Experiments on nanomechanical
oscillators observed with SETs cur-
rently start at temperatures near
100 millikelvins. These oscillators
have fundamental frequencies f0 on 
the order of 1 to 100 megahertz. As a
concrete example, consider a practical
oscillator with f0 = 10 megahertz,
a length of 2 micrometers, and the
other two dimensions on the order of
100 nanometers. The effective mass 
of such an oscillator is roughly
10–19 kilograms. An achievable quality
factor, Q, is about 104. In order to

observe discrete quantum passage
from one oscillator energy level to
another, the thermal energy should be
on the order of the level spacing, that
is, kBT ~ hf0, which corresponds to an
effective temperature T = .24 mil-
likelvin. Habib, Jacobs, Asa Hopkins,
and Keith Schwab have shown that
feedback cooling applied to this 
system at an initial temperature 
T = 100 millikelvins can yield a final
temperature of T = 0.35 millikelvin. 
At this temperature, the aggregate
occupation number lies between zero,
the ground state, and one, the first
excited state of the nanomechanical
resonator. In other words, the system
is cold enough to allow observation 
of quantum “jumps.” Although our
calculations are based on certain ideal-
ized assumptions, those assumptions
are close enough to reality that 
experimentalists can hope to achieve
similar results. 

Another, seemingly paradoxical,
application of quantum feedback 
control techniques might be in sup-

pressing quantum dynamical effects
such as tunneling. A classical memory
device can be viewed as a two-state
system with the two states separated
by a finite energy barrier. At low tem-
peratures, there is a finite probability
of coherent or incoherent tunneling
from one minimum to the other.
Tunneling generates random memory
errors, but continuous measurement,
coupled with feedback, can suppress
it. One such scheme is described and
demonstrated in Andrew Doherty et
al. (2000). The Hamiltonian for the
double well is taken to be

(3)

where x and p are dimensionless posi-
tion and momentum. Choosing A = 2
and B = 1/9 puts the minima of the
wells at ±3 and gives a barrier height
of approximately 13.5. The controller
is allowed to continuously observe the
position of the particle and to apply a

H p Ax Bx= − +
1

2
2 2 4 ,
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Figure 6. Cooling a Nanomechanical Resonator
This schematic diagram illustrates a concept for cooling a nanomechanical res-
onator to millikelvin temperatures, at which we can possibly observe quantum
dynamics. An SET measures the position of the resonator, and a feedback mecha-
nism damps (cools) the resonator’s motion. The resonator, which is charged by 
the voltage source Vgate acts as the SET gate electrode. The resonator is also
capacitively coupled to the SET island (red) and feedback electrode. As it moves
back and forth relative to the SET island, the current Isd flowing through the SET
changes. Information about the changing current is used by the feedback circuitry
to charge the feedback electrode. A force is generated that damps the resonator’s
oscillations.



linear force in addition to the “double-
well” potential already present. The
continuous observation is described by
the equation

(4)

where dq is the measurement result 
in the time interval dt and k is a 
constant characterizing the accuracy, or
strength, of the measurement. 
The system is also driven by a thermal
heat bath in the high-temperature limit.
The effect of that bath is, in fact, the
same as that of a continuous quantum
measurement of position that ignores the
measurement result. When the bath is
described in this way, it is the strength of
the fictitious measurement that gives the
rate of thermal heating, and we will
denote this constant by β. 

Integrating a stochastic master equa-
tion gives the observer’s state of knowl-

edge as a result of the continuous meas-
urement. However, since this is a differ-
ential equation for the density matrix of
the single particle, it is numerically
expensive to integrate. For practical pur-
poses, one requires a simplified means
for calculating a state estimate. To
achieve this goal, we note that, as a
result of the continuous observation,
even though the dynamics are nonlinear,
the density matrix remains approximate-
ly Gaussian. When a Gaussian approxi-
mation is used, the stochastic master
equation reduces to a set of five equa-
tions (for all the moments of x and p up
to quadratic order), and so it provides us
with a practical method for obtaining a
continuous state estimate. In practice,
this Gaussian estimator can be shown to
work quite well; that is, mean values
from the approximate estimator agree
very well with mean values derived from
exact numerical solutions of the stochas-

tic master equation—see Figure 7(a). 
In addition to a state estimation

procedure, we also require a feedback
algorithm. If the system were linear,
one could apply the optimal tech-
niques of modern control theory to
find a feedback algorithm. Because
attempting an optimal control solution
for the full nonlinear problem is com-
putationally intractable, the idea is to
linearize the system dynamics around
the present estimate of the state 
with the further assumption that the
probability density, conditioned on 
the measurement record, remains
Gaussian. As long as position meas-
urements are sufficiently strong, this
last condition is satisfied. The impor-
tance of this condition is twofold:
Having a Gaussian approximation
does not only mean that a small num-
ber of moments (five) are needed to
describe the distribution but also that
the quantum propagator is very close
to the classical propagator at each
time step (for exactly Gaussian states,
the two are identical), and hence 
techniques borrowed from classical
control have an excellent chance of
working. The control can fail if the
measurement is too weak to maintain
a localized Gaussian distribution or 
if it is too strong. In the latter case,
the state is Gaussian, but the measure-
ment noise is too large.

The Gaussian state estimate is now
used to set the value of the feedback
term in the Hamiltonian (the sign and
the magnitude of the coefficient of the
linear feedback term in the potential).
By choosing appropriate strengths for
the measurement and the feedback
strength, one can show that the feed-
back scheme is effective in controlling
whether the particle is in the desired
minimum—see Figure 7(b). For this
plot, the measurement strength is 
k = 0.3, and the thermal heating rate is
d〈E〉/dt = β = 0.1. 

This scheme has limitations arising
from unwanted heating due to the
measurement. Although some of the

dq x dt
dV

k
= +    ,
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Figure 7. Particle in a Double Well Controlled by an Estimation-
Feedback Scheme
(a) Shown here, as a function of time, are the target position (blue line), the ‘true”
mean position (red line) obtained with the stochastic master equation (in which the
measurement strength k equals 0.3 and the thermal heating rate β equals 0.1), and
the position obtained with the Gaussian estimator (gray line). (b) The control
strength (size of applied force) is shown as a function of time.



heating derives directly from having 
to keep the state close to Gaussian, a
more general limitation also con-
tributes to heating: The measurement
must be sufficiently strong to provide
enough information for control to be
effective. Developing new estimation
and feedback schemes that can reduce
the measurement-induced heating rate
is an important area for future research.

Outlook for the Future

Most likely, ideas in quantum feed-
back control will first be tested in
condensed matter physics and in
quantum and atomic optics.
Experiments in atomic optics have
already furnished the cleanest tests
and demonstrations of quantum
mechanics in the last several decades.
These include violations of the Bell
inequalities, quantum teleportation,
quantum state tomography, quantum
cryptography, and single-atom inter-
ference. The ability to compare exper-
imental results with precise theoretical
benchmarks is a hallmark of these
tests. As these experiments become
increasingly sophisticated and com-
plex, one can envisage a passage from
“toy” demonstrations to real applica-
tions such as feedback control. The
more strongly coupled systems of
condensed matter physics are less
amenable to accurate theoretical pre-
diction. Nevertheless, experiments are
becoming comparable in quality to
early atomic optics experiments,
and the time is ripe for active interac-
tion between these two fields:
Theoretical development in quantum
optics, such as continuous measure-
ment and quantum control, can be
taken over to condensed matter con-
texts, most notably in nanotechnology.
As the size of the smallest structures
that can be fabricated by lithographic
techniques decreases, the need for
quantum mechanics becomes
inevitable. Since lithography is the

only way we know to create very
complex systems at reasonable cost,
it follows that a fundamental and 
predictive understanding of quantum
dynamics applicable to these systems
(whether coherent or incoherent) will
be required. It is also clear that, for
these systems to be designable and to
function reliably in an engineering
sense, further development of quan-
tum control theory will be necessary.

From a “more algorithmic” per-
spective, the Holy Grail is the devel-
opment of optimal and robust control
algorithms that are generally applica-
ble. So far, apart from the trivial case
in which the system dynamics are 
linear and the measurement strategy is
considered fixed (Doherty and Jacobs
1999), no such optimal algorithms
have been found for quantum feed-
back control. In classical control 
theory, optimal and robust control
algorithms exist for linear systems,
but only very few for nonlinear sys-
tems despite the best effort of control
theorists in the past few decades.
Nonlinear classical optimal control is
a very difficult problem indeed, and
probably intractable in most cases.
Systematic numerical search algo-
rithms for optimal strategies exist, but
these also become intractable for sys-
tems of reasonable size. Because the
dynamics of noisy and measured
quantum systems is inherently nonlin-
ear, the quantum control problem may
also be intractable (Doherty et al.
2000). However, in quantum dynam-
ics, nonlinearity is of a restricted 
kind, and the possibility of obtaining
general analytic results providing
optimal and robust algorithms for the

feedback control of quantum systems
remains an open problem. �
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